Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.699
1.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734816

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Interleukin-18 , Interleukin-1beta , Intracellular Signaling Peptides and Proteins , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Macrophages/metabolism , Macrophages/immunology , Interleukin-1beta/metabolism , Male , Female , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Caspase 1/metabolism , Skin/pathology , Skin/immunology , Skin/metabolism , Severity of Illness Index , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Young Adult , Apoptosis Regulatory Proteins/metabolism , Antigens, CD/metabolism , NLR Proteins/metabolism , Case-Control Studies , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , CD68 Molecule , DNA-Binding Proteins
2.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734619

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Hydroquinones , Lipidomics , Melanosis , Quality of Life , Humans , Melanosis/drug therapy , Female , Adult , Hydroquinones/therapeutic use , Hydroquinones/administration & dosage , Tranexamic Acid/therapeutic use , Middle Aged , Melanins/metabolism , Male , Lipids/blood , Lipids/analysis , Epidermis/metabolism , Epidermis/drug effects , Epidermis/pathology , Phosphatidylethanolamines/metabolism , Phosphatidylcholines/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Lipid Metabolism/drug effects
3.
PLoS One ; 19(5): e0302781, 2024.
Article En | MEDLINE | ID: mdl-38713650

Atopic dermatitis is a multi-pathogenic disease characterized by chronic skin inflammation and barrier dysfunction. Therefore, improving the skin's ability to form an epidermal barrier and suppressing the production of cytokines that induce type 2 inflammatory responses are important for controlling atopic dermatitis symptoms. (-)-Blebbistatin, a non-muscle myosin II inhibitor, has been suggested to improve pulmonary endothelial barrier function and control inflammation by suppressing immune cell migration; however, its efficacy in atopic dermatitis is unknown. In this study, we investigated whether (S)-(-)-blebbistatin O-benzoate, a derivative of (-)-blebbistatin, improves dermatitis symptoms in a mite antigen-induced atopic dermatitis model using NC/Nga mice. The efficacy of the compound was confirmed using dermatitis scores, ear thickness measurements, serum IgE levels, histological analysis of lesions, and filaggrin expression analysis, which is important for barrier function. (S)-(-)-Blebbistatin O-benzoate treatment significantly reduced the dermatitis score and serum IgE levels compared to those in the vehicle group (p < 0.05). Furthermore, the histological analysis revealed enhanced filaggrin production and a decreased number of mast cells (p < 0.05), indicating that (S)-(-)-blebbistatin O-benzoate improved atopic dermatitis symptoms in a pathological model. In vitro analysis using cultured keratinocytes revealed increased expression of filaggrin, loricrin, involucrin, and ceramide production pathway-related genes, suggesting that (S)-(-)-blebbistatin O-benzoate promotes epidermal barrier formation. Furthermore, the effect of (S)-(-)-blebbistatin O-benzoate on type 2 alarmin cytokines, which are secreted from epidermal cells upon scratching or allergen stimulation and are involved in the pathogenesis of atopic dermatitis, was evaluated using antigens derived from mite feces. The results showed that (S)-(-)-blebbistatin O-benzoate inhibited the upregulation of these cytokines. Based on the above, (S)-(-)-blebbistatin O-benzoate has the potential to be developed as an atopic dermatitis treatment option that controls dermatitis symptoms by suppressing inflammation and improving barrier function by acting on multiple aspects of the pathogenesis of atopic dermatitis.


Cytokines , Dermatitis, Atopic , Epidermis , Filaggrin Proteins , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/metabolism , Mice , Cytokines/metabolism , Epidermis/drug effects , Epidermis/metabolism , Epidermis/pathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Keratinocytes/drug effects , Keratinocytes/metabolism , Humans , Intermediate Filament Proteins/metabolism , Intermediate Filament Proteins/genetics , Disease Models, Animal , Antigens, Dermatophagoides/immunology , Immunoglobulin E/blood , Male , Benzoates/pharmacology
4.
Exp Dermatol ; 33(5): e15084, 2024 May.
Article En | MEDLINE | ID: mdl-38711223

The transmembrane protein claudin-1 is critical for formation of the epidermal barrier structure called tight junctions (TJ) and has been shown to be important in multiple disease states. These include neonatal ichthyosis and sclerosing cholangitis syndrome, atopic dermatitis and various viral infections. To develop a model to investigate the role of claudin-1 in different disease settings, we used CRISPR/Cas9 to generate human immortalized keratinocyte (KC) lines lacking claudin-1 (CLDN1 KO). We then determined whether loss of claudin-1 expression affects epidermal barrier formation/function and KC differentiation/stratification. The absence of claudin-1 resulted in significantly reduced barrier function in both monolayer and organotypic cultures. CLDN1 KO cells demonstrated decreases in gene transcripts encoding the barrier protein filaggrin and the differentiation marker cytokeratin-10. Marked morphological differences were also observed in CLDN1 KO organotypic cultures including diminished stratification and reduced formation of the stratum granulosum. We also detected increased proliferative KC in the basale layer of CLDN1 KO organotypic cultures. These results further support the role of claudin-1 in epidermal barrier and suggest an additional role of this protein in appropriate stratification of the epidermis.


Cell Differentiation , Claudin-1 , Epidermis , Filaggrin Proteins , Keratinocytes , Keratinocytes/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Humans , Filaggrin Proteins/metabolism , Epidermis/metabolism , Epidermis/pathology , Skin Diseases/genetics , Skin Diseases/metabolism , Tight Junctions/metabolism , Keratin-10/metabolism , Keratin-10/genetics , Gene Knockout Techniques , Cell Proliferation , CRISPR-Cas Systems
5.
Appl Immunohistochem Mol Morphol ; 32(5): 215-221, 2024.
Article En | MEDLINE | ID: mdl-38650330

Practical yet reliable diagnostic tools for small-fiber neuropathy are needed. We aimed to establish a histopathologic protocol for estimating intraepidermal nerve fiber density (eIENFD) on formalin-fixed, paraffin-embedded tissue (FFPE), evaluate its reliability through intraobserver and interobserver analyses, and provide normative reference values for clinical use. Sixty-eight healthy participants underwent nerve conduction studies and quantitative sensory testing. Skin biopsies from the distal and proximal leg were taken and processed using routine immunohistochemistry (anti-PGP9.5 antibodies) on thin 5 µm sections. eIENFD was assessed with a modified counting protocol. Interobserver and intraobserver reliabilities were excellent (ICC=0.9). eIENFD was higher in females than males (fibers/mm, 14.3±4.4 vs. 11.6±5.8, P <0.05), decreased with age ( r s =-0.47, P <0.001), and was higher proximally than distally (15.0±5.5 vs. 13.0±5.3, P =0.002). Quantile regression equations for the fifth percentile of distal and proximal eIENFD were presented: 13.125-0.161×age (y)-0.932×sex (male=1; female=0) and 17.204-0.192×age (y)-3.313×sex (male=1; female=0), respectively. This study introduces a reliable and reproducible method for estimating epidermal nerve fiber density through immunostaining on 5-µm thin FFPE tissue samples. Normative data on eIENFD is provided. Regression equations help identify abnormal decreases in small nerve fiber density.


Epidermis , Nerve Fibers , Small Fiber Neuropathy , Humans , Male , Female , Epidermis/pathology , Epidermis/metabolism , Nerve Fibers/pathology , Nerve Fibers/metabolism , Small Fiber Neuropathy/diagnosis , Small Fiber Neuropathy/pathology , Adult , Middle Aged , Aged , Immunohistochemistry
6.
J Invest Dermatol ; 144(5): 989-1000.e1, 2024 May.
Article En | MEDLINE | ID: mdl-38643989

A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.


Dermatitis, Atopic , Keratinocytes , Dermatitis, Atopic/therapy , Dermatitis, Atopic/pathology , Humans , Keratinocytes/pathology , Permeability , Epidermis/pathology , Epidermis/metabolism , Skin/pathology , Skin/metabolism , Animals , Cell Differentiation
7.
Eur J Dermatol ; 34(1): 55-58, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38557459

Lichen striatus (LS), linear psoriasis (LPs), linear cutaneous lupus erythematosus (LCLE) and linear lichen planus (LLP) often have similar clinical manifestations, which makes clinical diagnosis with the naked eye difficult; therefore, they are easily misdiagnosed. The purpose of this study was to determine whether reflectance confocal microscopy (RCM) is helpful in differentiating between these four linear dermatoses in children. This retrospective study included 14 patients with LS, nine with LPs, eight with LCLE and 12 with LLP. All patients were analysed using RCM, and biopsies were collected from lesions previously imaged by RCM. For LS, the dermal papillary rings were partially absent, but when present, manifested with small, homogeneously round, bright cells and occasionally highly refractive plump cellular structures, aggregated in clusters. LPs exhibited dark cyst-like structures with small, bright, round cells aggregated at the epidermal level; at the dermal-epidermal junction, homogeneously distributed, enlarged, faint dermal papillary rings and numerous enlarged low-refractive canalicular structures were observed in the superficial dermis. LCLE and LLP exhibited similar manifestations, including epidermal disarray, almost total absence of dermal papillary rings, and various sized refractive structures densely distributed in the dermis. The key distinguishing features of LCLE were the different sized structures mainly clustered around hair follicles, while LLP demonstrated dense structures with a scattered distribution. RCM may be used to distinguish between the key features of LS, LPs, LCLE and LLP in children.


Keratosis , Lichen Planus , Psoriasis , Child , Humans , Retrospective Studies , Lipopolysaccharides , Epidermis/pathology , Lichen Planus/pathology , Keratosis/pathology , Psoriasis/pathology , Pruritus/pathology , Microscopy, Confocal/methods
9.
Methods Mol Biol ; 2801: 177-187, 2024.
Article En | MEDLINE | ID: mdl-38578421

In this chapter, we provide detailed instructions to perform quantitative reflectance imaging in a mouse model of a rare epidermal disorder caused by hyperactive connexin 26 hemichannels. Reflectance imaging is a versatile and powerful tool in dermatology, offering noninvasive, high-resolution insights into skin pathology, which is essential for both clinical practice and research. This approach offers several advantages and applications. Unlike traditional biopsy, reflectance imaging is noninvasive, allowing for real-time, in vivo examination of the skin. This is particularly valuable for monitoring chronic conditions or assessing the efficacy of treatments over time, enabling the detailed examination of skin morphology. This is crucial for identifying features of skin diseases such as cancers, inflammatory conditions, and infections. In therapeutic applications, reflectance imaging can be used to monitor the response of skin lesions to treatments. It can help in identifying the most representative area of a lesion for biopsy, thereby increasing the diagnostic accuracy. Reflectance imaging can also be used to diagnose and monitor inflammatory skin diseases, like psoriasis and eczema, by visualizing changes in skin structure and cellular infiltration. As the technology becomes more accessible, it has potential in telemedicine, allowing for remote diagnosis and monitoring of skin conditions. In academic settings, reflectance imaging can be a powerful research tool, enabling the study of skin pathology and the effects of novel treatments, including the development of monoclonal antibodies for therapeutic applications.


Skin Diseases , Skin , Mice , Animals , Skin/diagnostic imaging , Skin Diseases/diagnosis , Skin Diseases/pathology , Epidermis/pathology
10.
Actas Dermosifiliogr ; 115(5): T493-T496, 2024 May.
Article En, Es | MEDLINE | ID: mdl-38479690

Vascular hyperplasia is a common finding in prurigo nodularis/lichen simplex chronicus (LSC). The term prurigiform angiomatosis was recently proposed to describe a histologic pattern characterized by prominent vascular hyperplasia in patients with LSC. The aim of this study was to identify cases of LSC with this pattern and analyze associations with clinical and pathologic features and disease course. We reviewed 54 cases of histologically confirmed LSC and detected findings consistent with prurigiform angiomatosis in 10 (18.5%). The patients (7 men, 3 women) had a mean age of 59.7 years. The lesions were pruritic and predominantly located on the extremities and trunk. The most notable histologic finding was vascular proliferation in the superficial dermis associated with a lymphocytic inflammatory infiltrate. Recognition of prurigiform angiomatosis is important as it helps not only to distinguish LSC from other entities (mainly vascular tumors) but also to detect lesions that need to be surgically excised due to poor response to topical treatment.


Angiomatosis , Prurigo , Humans , Female , Male , Prurigo/pathology , Middle Aged , Angiomatosis/pathology , Aged , Neurodermatitis/pathology , Neurodermatitis/diagnosis , Adult , Terminology as Topic , Epidermis/pathology , Retrospective Studies , Hyperplasia/pathology , Aged, 80 and over
11.
Front Immunol ; 15: 1361005, 2024.
Article En | MEDLINE | ID: mdl-38500882

Atopic dermatitis, also known as atopic eczema, is a chronic inflammatory skin disease characterized by red pruritic skin lesions, xerosis, ichthyosis, and skin pain. Among the social impacts of atopic dermatitis are difficulties and detachment in relationships and social stigmatization. Additionally, atopic dermatitis is known to cause sleep disturbance, anxiety, hyperactivity, and depression. Although the pathological process behind atopic dermatitis is not fully known, it appears to be a combination of epidermal barrier dysfunction and immune dysregulation. Skin is the largest organ of the human body which acts as a mechanical barrier to toxins and UV light and a natural barrier against water loss. Both functions face significant challenges due to atopic dermatitis. The list of factors that can potentially trigger or contribute to atopic dermatitis is extensive, ranging from genetic factors, family history, dietary choices, immune triggers, and environmental factors. Consequently, prevention, early clinical diagnosis, and effective treatment may be the only resolutions to combat this burdensome disease. Ensuring safe and targeted drug delivery to the skin layers, without reaching the systemic circulation is a promising option raised by nano-delivery systems in dermatology. In this review, we explored the current understanding and approaches of atopic dermatitis and outlined a range of the most recent therapeutics and dosage forms brought by nanotechnology. This review was conducted using PubMed, Google Scholar, and ScienceDirect databases.


Dermatitis, Atopic , Humans , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/etiology , Dermatitis, Atopic/therapy , Skin , Treatment Outcome , Epidermis/pathology , Anxiety
12.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38474236

Epidermolysis bullosa simplex (EBS) is a dermatological condition marked by skin fragility and blister formation resulting from separation within the basal layer of the epidermis, which can be attributed to various genetic etiologies. This study presents three pathogenic de novo variants in young children, with clinical manifestations appearing as early as the neonatal period. The variants contribute to the EBS phenotype through two distinct mechanisms: direct keratin abnormalities due to pathogenic variants in the Krt14 gene, and indirect effects via pathogenic mutation in the KLHL24 gene, which interfere with the natural proteasome-mediated degradation pathway of KRT14. We report one severe case of EBS with mottled pigmentation arising from the Met119Thr pathogenic variant in KRT14, another case involving a pathogenic KLHL24 Met1Val variant, and a third case featuring the hot spot mutation Arg125His in KRT14, all manifesting within the first few weeks of life. This research underscores the complexity of genetic influences in EBS and highlights the importance of early genetic screening for accurate diagnosis and management.


Epidermolysis Bullosa Simplex , Child , Infant, Newborn , Humans , Child, Preschool , Epidermolysis Bullosa Simplex/genetics , Mutation , Phenotype , Keratins/genetics , Epidermis/pathology , Keratin-5/genetics
13.
Pigment Cell Melanoma Res ; 37(3): 378-390, 2024 May.
Article En | MEDLINE | ID: mdl-38343115

We have discovered that human vitiligo patients treated with narrow-band UVB (NBUVB) demonstrated localized resistance to repigmentation in skin sites characterized by distinct cellular and molecular pathways. Using immunostaining studies, discovery-stage RNA-Seq analysis, and confirmatory in situ hybridization, we analyzed paired biopsies collected from vitiligo lesions that did not repigment after 6 months of NBUVB treatment (non-responding) and compared them with repigmented (responding) lesions from the same patient. Non-responding lesions exhibited acanthotic epidermis, had low number of total, proliferative, and differentiated melanocyte (MC) populations, and increased number of senescent keratinocytes (KCs) and of cytotoxic CD8+ T cells as compared with responding lesions. The abnormal response in the non-responding lesions was driven by a dysregulated cAMP pathway and of upstream activator PDE4B, and of WNT/ß-catenin repigmentation pathway. Vitiligo-responding lesions expressed high levels of WNT10B ligand, a molecule that may prevent epidermal senescence induced by NBUVB, and that in cultured melanoblasts prevented the pro-melanogenic effect of α-MSH. Understanding the pathways that govern lack of NBUVB-induced vitiligo repigmentation has a great promise in guiding the development of new therapeutic strategies for vitiligo.


Epidermis , Melanocytes , Skin Pigmentation , Vitiligo , Vitiligo/pathology , Vitiligo/radiotherapy , Vitiligo/metabolism , Humans , Epidermis/pathology , Epidermis/metabolism , Epidermis/radiation effects , Skin Pigmentation/radiation effects , Melanocytes/pathology , Melanocytes/metabolism , Melanocytes/radiation effects , Ultraviolet Therapy/methods , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/radiation effects , Ultraviolet Rays , Female , Male , Wnt Signaling Pathway , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics
14.
Biofabrication ; 16(2)2024 02 22.
Article En | MEDLINE | ID: mdl-38306682

The undulating microtopography located at the junction of the dermis and epidermis of the native skin is called rete ridges (RRs), which plays an important role in enhancing keratinocyte function, improving skin structure and stability, and providing three-dimensional (3D) microenvironment for skin cells. Despite some progress in recent years, most currently designed and manufactured tissue-engineered skin models still cannot replicate the RRs, resulting in a lack of biological signals in the manufactured skin models. In this study, a composite manufacturing method including electrospinning, 3D printing, and functional coating was developed to produce the epidermal models with RRs. Polycaprolactone (PCL) nanofibers were firstly electrospun to mimic the extracellular matrix environment and be responsible for cell attachment. PCL microfibers were then printed onto top of the PCL nanofibers layer by 3D printing to quickly prepare undulating microtopography and finally the entire structures were dip-coated with gelatin hydrogel to form a functional coating layer. The morphology, chemical composition, and structural properties of the fabricated models were studied. The results proved that the multi-process composite fabricated models were suitable for skin tissue engineering. Live and dead staining, cell counting kit-8 (CCK-8) as well as histology (haematoxylin and eosin (HE) methodology) and immunofluorescence (primary and secondary antibodies combination assay) were used to investigate the viability, metabolic activity, and differentiation of skin cells forin vitroculturing.In vitroresults showed that each model had high cell viability, good proliferation, and the expression of differentiation marker. It was worth noting that the sizes of the RRs affected the cell growth status of the epidermal models. In addition, the unique undulation characteristics of the epidermal-dermal junction can be reproduced in the developed epidermal models. Overall, thesein vitrohuman epidermal models can provide valuable reference for skin transplantation, screening and safety evaluation of drugs and cosmetics.


Biomimetics , Epidermal Cells , Epidermis/pathology , Keratinocytes , Skin , Tissue Engineering/methods , Tissue Scaffolds/chemistry
15.
Matrix Biol ; 128: 31-38, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423396

The largest mammalian organ, skin, consisting of a dermal connective tissue layer that underlies and supports the epidermis, acts as a protective barrier that excludes external pathogens and disseminates sensory signals emanating from the local microenvironment. Dermal connective tissue is comprised of a collagen-rich extracellular matrix (ECM) that is produced by connective tissue fibroblasts resident within the dermis. When wounded, a tissue repair program is induced whereby fibroblasts, in response to alterations in the microenvironment, produce new ECM components, resulting in the formation of a scar. Failure to terminate the normal tissue repair program causes fibrotic conditions including: hypertrophic scars, keloids, and the systemic autoimmune connective tissue disease scleroderma (systemic sclerosis, SSc). Histological and single-cell RNA sequencing (scRNAseq) studies have revealed that fibroblasts are heterogeneous and highly plastic. Understanding how this diversity contributes to dermal homeostasis, wounding, fibrosis, and cancer may ultimately result in novel anti-fibrotic therapies and personalized medicine. This review summarizes studies supporting this concept.


Cicatrix, Hypertrophic , Scleroderma, Systemic , Animals , Epidermis/pathology , Fibroblasts/pathology , Fibrosis , Mammals , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Skin/pathology
16.
Int J Dermatol ; 63(4): 521-523, 2024 Apr.
Article En | MEDLINE | ID: mdl-38235837

The current goal of Zero Leprosy focuses on the interruption of the transmission of infection within endemic regions. While the role of the skin in the transmission dynamics of leprosy has not been clearly delineated, recent research on the environmental presence of lepra bacilli brings this aspect back into focus. We present a case of lepromatous leprosy with perforated-appearing histoid lesions on the palms and soles, demonstrating the presence of lepra bacilli throughout the epidermis.


Bacillus , Leprosy, Lepromatous , Leprosy , Humans , Leprosy/pathology , Leprosy, Lepromatous/diagnosis , Leprosy, Lepromatous/pathology , Epidermis/pathology , Skin/pathology
17.
J Dermatol ; 51(3): 453-457, 2024 Mar.
Article En | MEDLINE | ID: mdl-38217362

Senile lentigo (SL) is a pigmentary disorder associated with disrupted epidermal turnover. Trace minerals in the skin are known to regulate keratinocyte proliferation and differentiation. To clarify the role of iron in SL, we compared the expression of molecules related to iron metabolism between SL lesion (lesion) and the surrounding normal skin (nonlesion). Our results revealed that proteins involved in iron uptake and utilization such as transferrin receptor 1, iron regulatory protein 1, mitoferrin 1, and divalent metal transporter 1 were expressed in the lower epidermis in the nonlesion, while expression of them was also observed in the upper epidermis in the lesion. Ferroportin (FPN), involved in iron export, was expressed in the upper epidermis in the nonlesion, but was only scarcely expressed in the upper epidermis in the lesion. Hepcidin, which promotes FPN degradation, was expressed in the lower epidermis in the nonlesion; however, its expression was also observed in the upper epidermis in the lesion. These changes in the expression of molecules involved in iron uptake/export/utilization might reflect the altered iron utilization state in SL, resulting in disruption of keratinocyte differentiation and disturbing epidermal turnover. Our results suggest that the metabolism of iron in keratinocytes in SL differs from that in the normal epidermis, and these changes could be associated with the abnormal epidermal turnover and decreased melanin excretion in SL.


Lentigo , Photosensitivity Disorders , Humans , Epidermis/pathology , Skin/pathology , Keratinocytes/metabolism , Lentigo/pathology , Photosensitivity Disorders/pathology , Iron/metabolism
18.
Eur J Neurol ; 31(4): e16192, 2024 Apr.
Article En | MEDLINE | ID: mdl-38189534

BACKGROUND AND PURPOSE: Diagnosing small fiber neuropathies can be challenging. To address this issue, whether serum neurofilament light chain (sNfL) could serve as a potential biomarker of damage to epidermal Aδ- and C-fibers was tested. METHODS: Serum NfL levels were assessed in 30 patients diagnosed with small fiber neuropathy and were compared to a control group of 19 healthy individuals. Electrophysiological studies, quantitative sensory testing and quantification of intraepidermal nerve fiber density after skin biopsy were performed in both the proximal and distal leg. RESULTS: Serum NfL levels were not increased in patients with small fiber neuropathy compared to healthy controls (9.1 ± 3.9 and 9.4 ± 3.8, p = 0.83) and did not correlate with intraepidermal nerve fiber density at the lateral calf or lateral thigh or with other parameters of small fiber impairment. CONCLUSION: Serum NfL levels cannot serve as a biomarker for small fiber damage.


Peripheral Nervous System Diseases , Small Fiber Neuropathy , Humans , Small Fiber Neuropathy/pathology , Peripheral Nervous System Diseases/diagnosis , Intermediate Filaments , Nerve Fibers/pathology , Epidermis/innervation , Epidermis/pathology , Skin/pathology , Biopsy
19.
J Biophotonics ; 17(4): e202300386, 2024 Apr.
Article En | MEDLINE | ID: mdl-38200691

Ex vivo confocal microscope (EVCM) rapidly images freshly excised tissue at a histopathological resolution. EVCM features of keratinocyte skin cancers are well-established, but those of benign clinical mimickers remain scarce. We describe EVCM features of common benign lesions and compare them with their malignant differentials. EVCM was used to image 14 benign and 3 cancer tissues. We compared EVCM features of benign lesions with corresponding histopathology and with those of keratinocyte cancers. Key features of benign lesions were identified and differentiated from malignant lesions. Elastin and fat appeared prominent in EVCM; while koilocytes and melanin were difficult to identify. Visualization of entire epidermis was challenging due to difficulty of tissue flattening during imaging. Benign lesions can be differentiated from keratinocyte cancers with EVCM. Using EVCM, a rapid, bedside diagnosis and management of skin neoplasms is possible, especially in a remote location without a histopathology lab.


Skin Neoplasms , Humans , Skin Neoplasms/pathology , Epidermis/pathology , Microscopy, Confocal/methods , Melanins , Keratinocytes/pathology
20.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article En | MEDLINE | ID: mdl-38279315

Atopic dermatitis (AD) is a chronic inflammatory skin condition that affects individuals of all age groups, manifesting as a spectrum of symptoms varying from mild to severe. Allergen immunotherapy (AIT) involves the administration of allergen extracts and has emerged as a potential treatment strategy for modifying immune responses. Its pathogenesis involves epidermal barrier dysfunction, microbiome imbalance, immune dysregulation, and environmental factors. Existing treatment strategies encompass topical steroids to systemic agents, while AIT is under investigation as a potential immune-modifying alternative. Several studies have shown reductions in the severity scoring of atopic dermatitis (SCORAD) scores, daily rescue medication use, and visual analog scale (VAS) scores following AIT. Biomarker changes include increased IgG4 levels and decreased eosinophil counts. This review provides valuable insights for future research and clinical practice, exploring AIT as a viable option for the management of AD.


Dermatitis, Atopic , Humans , Dermatitis, Atopic/drug therapy , Desensitization, Immunologic , Immunoglobulin G/therapeutic use , Steroids/therapeutic use , Epidermis/pathology
...